Euclid’s bakery sells hexagonal pies. They sell pieces shaped like triangles, rhombi and trapezoids.

1. a) Shade $2 \frac{5}{6}$ pies: __________
 b) How many pieces did you shade? _____
 c) Write an improper fraction from the amount of pie shaded: ________

2. Make a model of the pies below with pattern blocks. Place the smaller shapes on top of the hexagons, and then write a mixed and improper fractions for each pie.
 a) __________
 Mixed Fraction: __________
 Improper Fraction: ________
 b) __________
 Mixed Fraction: __________
 Improper Fraction: ________
 c) __________
 Mixed Fraction: __________
 Improper Fraction: ________

3. Use the hexagon as the whole pie. Use the triangles, rhombuses and trapezoids as the pieces. Make a pattern block model of the fractions below. Then sketch your models on the grid.
 a) $2 \frac{1}{2}$
 b) $3 \frac{1}{2}$
 c) $2 \frac{5}{6}$
 d) $2 \frac{2}{3}$

4. Using the hexagon as the whole pie and the smaller pieces as the parts, make a pattern block model of the fractions. Sketch your model below.
 a) $\frac{5}{2}$
 b) $\frac{13}{6}$
 c) $\frac{7}{3}$
 d) $\frac{14}{3}$
5. Using the trapezoid as the whole pie, and triangles as the pieces, make a pattern block model of the fractions. Sketch your models on the grid.

a) \(\frac{5}{3} \)

\[\text{Diagram of } \frac{5}{3} \]

b) \(\frac{7}{3} \)

\[\text{Diagram of } \frac{7}{3} \]

c) \(1 \frac{2}{3} \)

\[\text{Diagram of } 1 \frac{2}{3} \]

d) \(2 \frac{1}{3} \)

\[\text{Diagram of } 2 \frac{1}{3} \]

Draw sketches (using the hexagon as the whole) to find the answers below.

6. Which fraction is greater: \(2 \frac{5}{6} \) or \(\frac{15}{6} \)?

\[\text{Diagram of } 2 \frac{5}{6} \] and \[\text{Diagram of } \frac{15}{6} \]

7. Which fraction is greater: \(3 \frac{1}{3} \) or \(\frac{11}{3} \)?

\[\text{Diagram of } 3 \frac{1}{3} \] and \[\text{Diagram of } \frac{11}{3} \]

8. Draw a picture to show \(2 - \frac{1}{6} \).

\[\text{Diagram of } 2 - \frac{1}{6} \]

9. How much larger than a whole pie is \(\frac{11}{6} \) of a pie?

\[\text{Diagram of } \frac{11}{6} \]

10. How much larger than two pies is \(\frac{7}{3} \)?

\[\text{Diagram of } \frac{7}{3} \]

11. Ravi says \(\frac{9}{6} \) pies is the same amount as \(1 \frac{1}{2} \) pies. Is he correct?

\[\text{Diagram of } \frac{9}{6} \] and \[\text{Diagram of } 1 \frac{1}{2} \]

12. Jane sold \(1 \frac{2}{3} \) pies. Clara sold 11 pieces. (Each piece was \(\frac{1}{6} \) of a pie). Who sold more pie?

\[\text{Diagram of } 1 \frac{2}{3} \] and \[\text{Diagram of } 11 \]

13. Bernie ate \(2 \frac{2}{3} \) pizzas in June. How many third-sized pieces did he eat?

\[\text{Diagram of } 2 \frac{2}{3} \] and \[\text{Diagram of } \]